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SUMMARY 
The mathematical theory of optimal control is applied to the problem of steering a ship as quickly as possible to a 
new course. In the linearized theory such an optimal control exists for each change of course and will be discussed for 
stable as well as unstable ships. 

1. Introduction 

A ship follows a certain rectilinear course and wants to change to another one. The initial 
course and the final one are prescribed. The problem we will discuss is how to change the rudder 
angle with time to realize the prescribed change of course as quickly as possible. It is assumed 
that the forward speed of the ship is constant. 

In order to define the mechanical behaviour of the ship we need its equations of motion [1], 
which contain the rudder angle 6, confined between two values, as a control variable. We will 
consider the linearized equations. The coefficients of these have been determined in an experi- 
mental way [5], [6]. 

To solve this steering problem a theory of trajectory optimization is needed. By means of the 
"maximum principle" of Pontryagin [8], a geometrical insight into possible optimal trajectories 
of the ship is obtained. The desired optimal trajectory cannot be found in a straightforward 
manner. Several trials must be made and the prescribed change of course has to be found by 
interpolation. This method is practically limited to linear time invariant systems of second or 
third order. In our case we have a third order problem. 

In the last section of this paper another method of solving the problem is discussed briefly. 
This method is also suitable for higher order systems. 

We assume that the rudder can change its angle instantaneously. Then as a consequence of 
the application of the maximum principle to our equations of motion the rudder angle will be a 
piecewise constant function of time. In practice this can never be realized, but for a not too 
small angle of course changing the piecewise constancy of the rudder angle forms a good 
approximation. 

Our results are compared with those obtained by employing still more simplified equations 
of motion, developed by Nomoto  [7]. It appears that the results agree rather well for not too 
small changes of course. 

This paper is an extract of [9]. 

2. The Equations of Motion of a Ship 

It is assumed that the ship moves through undisturbed water and air. Moreover we consider 
only its motion in the horizontal plane, hence for instance pitching and rolling are neglected. 
The number of degrees of freedom possessed by the ship is therefore limited to three : motion 
of the center of gravity in the two dimensions of the horizontal plane and an angular orienta- 
tion with respect to a fixed direction. We use a Cartesian coordinate system fixed to the ship. 
The origin of the system coincides with the center of gravity, the x-axis coincides with the axis 
of symmetry of the ship and the y-axis is perpendicular to this axis. This choice has the ad- 
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138 G. J. Olsder 

vantage that the force required to accelerate the water surrounding the ship can be put into 
a particularly simple form [3]. 

The following quantities, partly denoted in Figure 2.1, are introduced: 
V velocity of the ship. 
v, ~ components of V in x and y direction. 

driftangle. 
0 angular position of the x-axis with respect to the reference axis 1. 
3 rudder angle. 
L length of the ship. 
p specific density of water. 
t time. 
r angular velocity, i.e. r =  dO/dt. 
m mass of the ship. 
I moment of inertial taken around the vertical axis through the center of gravity. 

Arrows indicate the directions in which the quantities are positive. 

l V 

qJ X 

Figure 2.1 Coordinates and velocities defining the state of the ship. 

The equations of motion are 1-1], [3] : 

0 = r ,  (2.1) 

rn(b-  r .,I) = X ,  (2.2) 

m(il + r" v) = Y ,  (2.3) 

I~ = N ,  (2.4) 

where X, Y are the forces and N the moment about the center of gravity, acting on the ship. 
A dot above a symbol denotes its derivative with respect to time. In general X, Y and N depend 
on v, t/, r, 6, f, 0 and ~. In this paper it.is assumed that the forward speed is constant and will 
be denoted by v o. Note that by constant power input to the screw the speed of advance will 
decrease by manoeuvring, so that in case of a constant forward speed the power input must be 
properly adjusted. In addition, because we will only consider the linearized theory, the term 
- m. r. q in equation (2,2) is neglected and because the forward speed is constant X becomes 
zero. This means that in the x-direction the thrust always equals the resistance of the ship in 
water and air. Equation (2,2) becomes irrelevant. 

The ship is said to be in equilibrium if r--  q = 0. Because we consider only small disturbances 
of the equilibrium position, Y and N are assumed to be linear functions of ~/, r, 0, ~ and 3 ; 
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Time optimal  course changing o f  ships 139 

Y =  Y~. r/+ g .  r/+ Ya. 5 + Y0.0 + Y~. ?, (2.5) 

N = N , ' r / + N , ' r + N a ' a + N r T " i l + N ; ' L  (2.6) 

The quantities m, I, Y~, Y~, Y,, Y;, Ya, IV,, N, i, Nr, N~ and Na are constants which have been measured 
for several types of ship models [5], [6]. Substitution of equations (25) and (2.6) in (2.3) and 
(2,4) yields 

(m-  g ) ' i l -  g;';~ = Y,'r/+(Y,.-m'v)'r+Y~.,5, (2.7) 

-No. i l+  (I-U;).  e = U,- r/+U,' r+U~' a. (2,8) 

At this point we introduce dimensionless quantities. 
These new quantities, provided with a bar, are obtained from the quantities with dimensions 

in the following manner:  

v r~ rL  ilL 
9 -  - 1 ;  f / = - - ;  ~ = - - ;  0 - = - - "  

V 0 V 0 Y 0 Vg 

~L 2 m . I Y~ . 
F =  V~o ; ~. - �89 L a , l - �89 L 5 ; ~ = �89 vo. L2 , 

- ~_ . r ~ _  Y~ . g =  Y~ . 
Y~ - �89 L 3 ' �89 Vo . L 3 ' �89 " L" ' g = -~p" vo " ~ 2 L 2 ; 

n .  . _ No . ~ _  n~ . n~ . 
N ,  = �89 vo. L3 , N~ �89 L 4 , �89 vo. L ,  , N; = �89 L 5 , 

N~ . tv o 
N~ = �89 v2. L a ' t - L (2.9) 

Having introduced the dimensionless quantities, we omit the bars and equations (2.1), (2.7) 
and (2.8) can be written as 

dO 
dt r ,  (2.10) 

dr/ 
d t  = b3r /+b4r  + b s 6  ' (2.11) 

dr 
d t  = C3r/ + c4r-t-Cs(~ ' (2.12) 

where bi, ci, i=  3, 4, 5 are constants which have been calculated from the (dimensionless) 
coefficients in equations (2.7) and (2.8). 

If 

/L D = -N,i  , (2.13) 

then 

b3 = D I - - N i  

1 ~ - Y ;  
bs = ~ I - N ~  

1 m-Y~ Y~-m 
c4 = ~ -N,~  Nr 

1 fY~-m -Y~ . 
; b 4 = ~  Nr I - N ;  ' 

1 m-Y~ Y. . 
; c a = D  - N  o Nn ' 

1 m-Y~ Y~ 
; c 5 = ~  -N~ No " 

(2.14) 
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3. The Statement of  the Problem 

We want to change the course of the ship. Therefore we are only interested in the three coor- 
dinates O, tl and r. The initial situation will be (0, r/, r) = (0, 0, 0) and the prescribed final situation 
(~, 0, 0). The three quantities 0, t /and r are described by the equations (2.10)-(2.12). We consider 
the motion of the ship in a three dimensional phase space, spanned by the 0-, r/- and r-axes. 
In Figure 3.1 use is already made of results which will be discussed in section 4. 

Figure 3.1 The motion of the ship in the (0, q,r) space, with the projection of the trajectory in the (t/, r) plane. 

The question is how to reach the final position as quickly as possible from the initial position 
by steering the ship. So we have to determine the rudder angle c5 as a function of time, 6 = &(t). 
The rudder angle can be varied free within a previously given angular region [61 < 6ma x. In our 
linearized theory we assume that &max is sufficiently small. From experiments [-5] it can be con- 
cluded that the linearized theory is rather accurate with respect to fi for values of 6max smaller 
than 20 degrees. 

4. Application of Results of Control Theory 

Equations (2A0)-(2.12) can be written in vectorform as 

dx 
d t  = A x  + b6,  (4.1) 

where 

(i) (i 01) , b =  b5 , A b3 b4 �9 

C5 C3 C4 

It is easily seen that system (4.1) is controllable. For a definition of controllable systems see [-4]. 
We now mention a known property of controllable linear processes on the assumption that 
the eigenvalues of matrix A are real and that 16(t)] < 6m,x" The property in this case is, that each 
time optimal control 6(t) is piecewise constant, that it takes on only the values -'[-6ma x and 
- 6max and does not have more than ( n -  1) switches, i.e. discontinuity points, where n is the 
order of system (4.1). 
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The eigenvalues of 

are denoted by e and fi and these are also eigenvalues of A. The third eigenvalue of A is zero. 
We suppose that ~ and fl are real and distinct. For all known types of ships c~ and fi are real. 
So we know that for our problem at most two switches of the rudder exist. 

It is clear that in practice "jumps" of the rudder can never be realized. But if we restrict our- 
selves to shipmanoeuvres which vary slowly with respect to the time interval needed for turning 
the rudder from - 6ma• to + 6m~, or vice versa, the piecewise continuity of 6 (t) is a good approx- 
imation. This happens when the change of course is sufficiently large. 

We assume that at a switch at time 

O(z-) = O(z+), t/(z-) = t/(z +) and r('c-) = r('c+) , (4.2) 

where -c- denotes the moment directly before the switch and z + the moment after. This is also 
a logical consequence of the equations of motion (2,10)-(2,12). 

Because always 16[ = 6 . . . .  the solution of our problem is composed of two types of trajectories 
of the form 

f 0 = rdt 

tl+_ = Ce~t + DeP* +_P (4.3) 

r• = M~Ce~t + M2DeP~ + Q 

which are the solutions of equation (4.1) with ~ = __ (~max ; C and D are constants of integrations. 
The following abbreviations have been used: 

P = (~max b4cS-c4b5 bsc3-b3c5 
bac4-c3b4 '  Q = 6max b3c4-cab4 '  

a - b  3 f l - b  3 
M 1 -  , M 2 -  (4.4) 

b4 b4 

For the further description of optimal solutions we distinguish two cases. Firstly, ~ < 0 and 
fl< 0, and secondly ~ >0  and fl< 0, or ~<  0 and fl >0. The third possibility, ~ > 0  and fl >0, 
is only of theoretical interest and will not be discussed here ([9]). 

5. Stable Ships; (x < O, fl < O) 

Considering the two-dimensional (t/, r) plane, we can sketch qualitatively the trajectories 
(1/+ (t), r + (t)) and (t/_ (t), r_ (t)) (see Figure 5. la  and b). The trajectorieS have a node at the point 
N+. The coordinates of N+ are (_+ P, _+ Q). The points N+ and N_ are singular points of the 
differential equations, consisting of the second and third row of equation (4.1) with ~ = 6ma x 
and ~ = - ( ~ m a x  respectively. 

In the (11, r) plane the initial and final position have been settled in the origin, so a closed curve 
must be constructed, running from the origin to the origin and consisting of parts of (t/+, r§ 
and (t/_, r_). Provisionally we do not take notice of 0. If we suppose that the ship starts with 
3 = ~-(~max at t = 0, the first part of the trajectory is a part of the solution (q +, r+), in Figure 5.2 
called l, passing through the origin. Along this solution the ship approaches N+ for t ~ oo and 
will never return to the origin. Therefore we need at least one switch of the rudder. Suppose this 
occurs at some t = zl >0. The second part of the trajectory is a part of the solution (q_, r_), 
which passes through (r/+ (z 1), r + (z 1)). Along this solution the ship runs to N_ for t--* oo. This 
part does not pass through the origin, as appears from equation (4.3). So we need yet another 
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iptane 

(a) 

/ 
-q 

< 

/ 
Figure 5.1 The trajectories (r/_+, re)  in the (r/, r) plane, in the case e <  0, f l< 0. 

switching point at t = zz > ~ 1 to return to the origin. At most two switching points are admissible, 
so the third part must pass through the origin and it is easily seen that this part is the continua- 
tion of l to the right. The final time, the time at which we are back at the origin, is denoted by t r 

The conclusion is that when c~ < 0 and fi < 0, in which case the ship is called stable, we can 
always go back to the origin in the (t/, r) plane. Let us now return to the tree dimensional space 
(0, v, r). The final position will be denoted by (~, 0, 0). If we choose z~, everything is determined 

.N+ 
l ~ t:'l: 1 

0 

Figure 5.2 The three 

t 

\ 

k 

\ 

* N -  

)arts of the trajectory. 

r 

and ~ is a unique and obviously continuous function of z~. If ~ is given beforehand, the right 
value of zl can be found by interpolation. 

As will be proved in section 7 we have, in the case of an optimal trajectory, the remarkable. 
formula : 

= + Q - + ( t , -  (5.1) 

which is valid when the ship starts at t = 0 its change of course with 6 = • 6ma x. If one chooses the 
first switch of the rudder near N+, ca can be made arbitrarily large, while (r2 -z~)  and ( ty-z2) ,  
the times necessary for the ship to run along the second and third part of its trajectory, remain 
of the same order. So ~ may be chosen arbitrarily; each change of course can be realized. 
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N+ 

(~+ r + ) ~  N_ 

Figure 5.3 The attainable region of the ship in the (t/, r) plane. 

The shaded region in Figure 5.3 is the "attainable region" of the ship. It is impossible for the 
helmsman to give his ship a transverse velocity ~/and a rotational velocity r belonging to points 
outside the shaded area, when he starts from q = r = 0. This can be proved as follows. We use 
the theorem [4], [8] which states that every point in the (t/, r) plane, which can be reached in 
one way or another from the origin, can also be reached by an optimal control. Hence a point 
which cannot be reached by an optimal control cannot be reached at all. However by optimal 
steering we cannot escape from the open region, which is bounded by the trajectories (t/+, r§ 
passing through N_ and (t/_, r_) passing through N+. Hence we remain in the shaded region 
by any steering. 

6. Unstable Ships; ~ >0,  f l< 0 (or ~<  O, fl >0).  

In this case the solutions of equation (4.3) resemble hyperbolas [2]. These solutions are drawn 
in Figure 6.1. 

( 'q+,r+)ptane /" 

.-_- 
. . . . .  -,'N;'- 

z~ r 

///'V (a) 

i1 II  

/~/ ("q_, r )ptane 

(b) 
Figure 6.1 The trajectories (q+, r+) in the (t/, r) plane, in the case ~ >0, fl< 0. 

The solutions (t/+, r+) have a saddlepoint at N+, the solution~s (t/_, r_) have a saddlepoint at 
N_. A difficulty arises in this case. Let us consider Figure 6.2. If we choose zl arbitrarily, we 
cannot always return to the origin. If we take the first switch e.g. at point B, we cannot find a 
second switch, in such a way that the third part of the trajectory passes through the origin. 
Being at point B, it is impossible to return to the origin, by any steering. Suppose the contrary; 
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then also an optimal trajectory, which returns to the origin, exists and that is not possible. We 
speak of an unstable ship. Here we once more stress that the forward velocity is kept constant 
during the manoeuvre. Of course the linearized equations are no longer valid as the ship moves 
further away from the origin; that is the case when zl is chosen too large. The shaded strip 

/ 
/ 

- /  

- r 

/ s / [ 

Figure 6.2 The possible optimal trajectories. 

between the lines I and m is the attainable region. Each change of course can again be realized. 
The time interval ( 'c2-zl)  can be made arbitrarily great in comparison with Zx and (t I -  z2), 
as we choose the first switch near, but to the right of point C. So by (5.1) each ? can be realized. 

The case c~< 0, fl > 0 can be treated similarly. It is the retrograde motion of Figure 6.2. 

7. The Calculation of x2, tf and O(t.f), when zl is given 

We now will derive some formulas, which give 772, tf and 0 as a function o f zv  These derivations 
are valid for stable as well as unstable ships. The equations of the first part of the trajectory are 

tl + (t) = e t  e't + E z J '  + P , (7.1) 

r + (t) = M 1E 1 e ~t + M 2E 2e at + O,  (7.2) 

with M1 and M2 given by (4.4) and 

E1 - O - M 2 " P  E2 - Q - M a ' P  (7.3) 
M 2 - -  M t ' MI  - -  M 2 

At time t = z i the rudder switches. The values of q + (z ~) and r + (z 1 ) are known by equations (7.1) 
and (7.2). The equations of the second part are 

t/_ (t) = F 1 e ~t + F 2 e p t -  P ,  (7.4) 

r_ (t) = M 1V~ e ~' + M2 F2 e p~- Q,  (7.5) 

with 

F1 = El(1-2e-=*l) ,  F2 = Ez(1-2e-P~I) .  (7.6) 

The equations of the third part are the same as those from the first part within a translation 
with respect to t. Therefore the third part can be written as 

rl+(t') = Ele~" + E2ePt'+ P , (7.7) 

r+ (t') = M1 E1 e~C + M2E2 eat'+ Q ,  (7.8) 

where t ' =  t - t f ,  where the final time t f  is still an unknown constant. The trajectories (7.4), 
(7.5) and (7.7), (7.8) have two points of intersection : (t = z t, t ' =  zl) and (t = "c 2, t '=  z4). Note that 
z4 will be negative. For  the relevant point of intersection the following formulae are valid: 
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Ele~4+E2ea~4-Fle~2-F2eP~2+2P = 0,  (7.9) 

M1Ele~+M2E2eP~4-M1Fae~ '2-M2F2ea~2+2Q = 0. (7.10) 

Eliminating -c2, we get 

1 in I e~4--2 } _ ~ln ~ e~4--2 ~ 
cr 1 - 2 e  -~ '  ~ l _ 2 e _ a ~ l j  = 0 .  (7.11) 

From this formula we calculate % numerically by a Newton-Raphson technique. Now % is 
known and 

z 2 = - In , (7.12) 
1 - 2 e  - ~  

and t f  = Z 2 - -  "C 4. 

Finally we calculate 7: 

7 = r t+  r ~ d t +  r t ,  7.13 
dO d~l .)~2 

where the indices I, II and III denote the parts of the trajectory. Taking together the first and 
the final term of the right hand side of equation (7.13) we obtain 

7 = r+dt+ r_dt  = Q ( 2 z l - z 2 - z 4 )  
4 "~1 

= Q {zt - (z2 - rl) + ( t y -  r2)} (7.14) 

which is the result we already mentioned in equation (5.1). 
If the ship started its change of course with 6-- - 6  . . . .  the right hand side of equation (7.14) 

would have been provided with a minus sign. 
For the unstable ships (cr > 0, fl < 0) it can easily be found that the upperbound for the first 

switching time, in Figure 6.2 when the ship is at point C, is: 

In 2 
rl < -  (7.15) 

8. Numerical Results 

The calculations have been made with regard to three types of ships, (a), (b) and (c). The meas- 
ured quantities of(a) and (b) are mentioned in [5] and [6] respectively. Type (c) has been derived 
from (19) by changing its coefficients somewhat. 

coefficients type of ship 

(a) (b) (c) 

b3 -0.8946 -0.576 -0 .5  
b4 -0.2856 -0.283 -0 .3  
b5 +0.1453 +0.1795 +0.1795 
c3 -4.392 -3.886 -3 .8  
cA -2.719 -2.237 -2 .2  
c5 -1.225 -1.307 -1.307 

The eigenvalues cr and fl are calculated from these coefficients and are 

-0.3623 -0.0688 +0.0147 

fl -3.2515 -2.744 -2.715 
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We see that type (a) is stable, (b) is just stable and (c) is not stable. The results are shown in 
Figure 8.1. In this figure zt, % and t I have been plotted against 7/6 . . . .  as Q, and therefore 7, is 
linear in ~max by (4.4) and (7.14). 

For small 7 and small time intervals [0, tl] it is not real to admit jumps of the rudder as al- 
ready has been remarked in section 4. In the next section this will be discussed in greater detail. 
Interpreting Figure 8.1, we will consider only those 7, of which 7/6m~ > 4. 

It is difficult to get type (a), the stable one, out of its original course, so za lasts long in com- 
parison with the "correction" times ( % -  z~) and (t I -  %). 

Type (c), the unstable one, changes its angular position very quickly. The "correction" time 
(%--c ~) is rather long. By (7.15) the upperbound for the first switching time is 47 units of time. 
For 0__< 7/6m,~ < 20 the switch time ~ does not approach this limit. 

Type (b), just stable, resembles type (c), but in this case ~ does not have an upperbound. So 
for large values of 7/6m,• the characters of type (b) and (c) in Figure 8.1 will differ considerably. 

l i i i i i i l i 1 

t f  

1;~,'~2,t f 

18 

16 

12 

10 

tf t f  

�9 ~ ~" ~ ~ s 

" "<~:LS .  2 :f.- -" . . . . . . . .  ......... 
t / . < 5  " t  - -  t y p e  of sh ip  (a) 

->- '~ . . . . . . . . . . . .  ( b ) 
. . . . . . . . . . . . . .  {c)  

0 2 r 6 8 10 12 1/* 16 18 20 

Figure 8.1 v/6m~x 

In Figures 8.2 and 8.3 the optimal trajectories of type (a) and (b) respectively, which belong 
to changes of course of ~/4, ~/2, 3g/4 and ~ radials, in the physical horizontal plane, have been 
plotted. The coordinates x* and y* of the horizontal plane are fixed in space. 

From section 2 it follows that 

x*(t) = fro sin(0(t)+ arctg(~(t) ) )dt , 

y*(t) = f~o cos(0(t)+ arctg(q(t)))dt , 

assuming that Vo = 1 and that the process started at t = 0. Because x* (t) and y* (t) are not linear 
in 6 . . . .  we have to make a choice for this quantity. In Figures 8.2 and 8.3 the maximum rudder 

Journal of Engineering Math., Vol. 3 (1969) 137-150 



Time optimal course changing of ships 147 

7 
Y~ln uni ts  of the t e n g t h  

of the ship 

- 2  

I I I I I I I I I I I 
~o _ 2 ~ _ t f  

32 

31 

3O 

\ .  

/ / , / 3 5  

34 

3 6  

37 

26 

24 

21 

22// 

' t f  

1 

I I I I I I I I I 1 
1 2 3 4 5 6 7 8 9 10 X' in uni ts  of the Length 

of the ship 

Figure 8.2 The optimal trajectories of type (a) in the horizontal plane, belonging to changes of course of n/4, ~/2, 
3~/4 and ~ radials. 

Y'in unfts of the Length 
of the ship 

I I I I I 

/ 

/ / - _ - . . . . . . . . . .  P - I  �9 

\ x x 

\ x  \ 

1:2~ x 
,,',, a 

1" 2 

I I t I I ~t ,  I 
1 2 3 /4 5 ~ 7 X~in units of the Length 

of the ship 

Figure 8.3 The optimal trajectories of type (b) in the horizontal plane, belonging to changes of course of ~/4, ~z/2, 
3~z/4 and ~ radials. 
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deviation 6ma x w a s  chosen to be 0.15 radials. The numbers along the trajectories denote the 
units of time. The radius of the smallest turning circle, the limiting circle, is 1/Q = 4,53 for type 
(a) and 0.868 for type (b). The limiting circle of type (a) has not been drawn in the figure, because 
it nearly coincides with the plotted trajectory. 

9. Comparison with the First Order Simulation of Nomoto 

In [7] Nomoto gives a first order simulation of the steering problem. The equations do not 
contain the lateral velocity q: 

dO 
d t  = r ,  (9.1) 

dr 
T ~ + r =  K'cS,  (9.2) 

T and K are constants. 
Nomoto argues that K and T can be expressed in the constants b3, b4, bs, ca, c4 and c5 

in the following way: 

K - bsc3-b3c5  
, (9.3) 

b3 c 4 -  b4c3 

ba + c4 c5 _).  
T = - b3c4-b4c3 + bsc3 -bacs  

(9.4) 

Let us now consider again the problem of change of course by applying the maximum prin- 
ciple to system (9.1), (9.2). The same conditions as in the third order problem of section 4, are 
assumed" the process starts at t '-- 0 at the point r = 0, t/= 0 and ends at t s with r(tl) = 0, r/(t~) = 0, 
O(tl) =7. It follows from the theory of the maximum principle that at most one switch of the 
rudder exists. Choosing the switching time ~ arbitrarily, z > 0, the time necessary for the change 
of course with angle 7, t l  can be calculated in the same way as discussed in the foreoging sec- 
tions : 

t I = T ln(2e ' / r -  1), (9.5) 

7 = 0(tl) = ___K { z -  ( t y -  z)}. (9.6) 

When the ship starts the change of course with 6 = + 6 . . . .  then the plus-sign is valid in equation 
(9.6), otherwise the minus-sign is. 

The results of the calculations are shown in Figure 9.1. In Figure 9.2 the relative difference 
between the results of our method and Nomoto's have been plotted against 7/6max. If ~)/(~max > 4 
the theories agree within about 10 % of the prediction of their final time t s. When V/6max < 4, 
they differ appreciably. However both theories then become questionable, because the switching 
time will not be short with respect to the final time ty. From Figure 8.1 we see that the intervals 
(t I -  %) are small with respect to (r2 - v l )  and Zl. This means that in essence we have two im- 
portant steering periods. This is in agreement with the approximation of Nomoto, who uses a 
first order simulation and hence one switch. For this reason it is expected that in general 
Nomoto's approach will be sufficiently accurate for 15ractical purposes. 

10. Another Method to Solve the Steering Problem 

The method used in section 4, 5 and 6 is practically limited to linear systems of third order. 
For  systems of higher order it is in general very difficult to get a geometrical insight into the 
possible optimal trajectories. Therefore in this section another method of solution, which is 
also suitable for higher order systems of equations, will be discussed briefly. For a more com- 
plete treatment see [9]. 
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Equation (4.1) is considered again: 

dx 
dt A x + b ~ .  (10.1) 

The maximum principle [8] states that the optimal control can be expressed explicitly in terms 
of solutions 0(t) of the related adjoint differential equation; 

(~(t) = (~max" sgn(0(t) ,  b) ,  (10.2) 

where (0(t), b) denotes the innerproduct of 0(t) and b, 0(t) is a solution of 

dO 
- A T O ,  (10.3) 

dt 

where A T is the transpose of A. If we choose an initial value for 0, i.e. 0(to) = 0o, the solution of 
(10.3) is known and 5(t) can be calculated from (10.2). However, the trajectory, which starts 
from Xo at time t o and belongs to the calculated control function 5(t) will in general not pass 
through xy. So the difficulty is how to choose 0o so that the trajectory will pass through 0o- 
Neustadt [10] developed a method in which the difficulty of finding the right 0o is reduced to 
the determination of the stationary value of a function, which contains the three components 
of 0o as arguments. This value can be calculated numerically by using the gradient method of 
Powell [ l lJ .  
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